If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-35y-40=0
a = 5; b = -35; c = -40;
Δ = b2-4ac
Δ = -352-4·5·(-40)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-45}{2*5}=\frac{-10}{10} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+45}{2*5}=\frac{80}{10} =8 $
| -14=−7n | | x-1=3x+ | | 7+2n-6=9 | | 9/p=3/16 | | 16/18=3/n | | x-19/24x=40 | | 85+9x=15x+25 | | 1,2x^2+3,84x+177,69=0 | | 17.35=x+7.29 | | 3(6•3+7)=x | | w+75=-79 | | F(n)=3n+4^2 | | Y=x-4.Y=3x+4 | | 7(9+5x)=63 | | 3(x+4)=4(-2x | | `15y=60` | | v²+8v+7=0 | | x=-102+0.41 | | 3r+4=-10-4r | | a2=64/225 | | 4=5y-7 | | 40g=6 | | -2z+12=-2(z-6) | | 6n-8+3n-28=180 | | 3/4+2x=44 | | 6x(8+3)=(x8)+(x3)= | | 5u−2u+4=16 | | ❏x+11=5x+19 | | 4x2+7x=8 | | x+(x*0.2037)=10000 | | 6=-4u+2(u+6) | | 5+4y-7=4y2-y |